首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum chemical studies on the role of water microsolvation in interactions between group 12 metal species (Hg2+, Cd2+, and Zn2+) and neutral and deprotonated cysteines
Authors:Seiji Mori  Takahiro Endoh  Yuki Yaguchi  Yuuhei Shimizu  Takayoshi Kishi  Tetsuya K Yanai
Institution:1. Faculty of Science, Ibaraki University, Bunkyo, Mito, 310-8512, Japan
2. Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki, 319-1106, Japan
Abstract:Interactions of group 12 metal(II) species (Hg2+, Cd2+, Zn2+, Hg(H2O) n 2+ , Cd(H2O) n 2+ , and Zn(H2O) n 2+ (n?=?1, 2) with neutral (RSH), deprotonated (RS?), and doubly deprotonated cysteine species (abbreviated as ??H2cys??, ??Hcys???, and ??cys2???, respectively) are examined with the Becke three-parameter Lee?CYang?CParr (B3LYP) hybrid functional after preliminary screening in a conformation analysis with the Parameterized Model number 3 (PM3) semiempirical method. Effects of water on aqueous solution are evaluated by microsolvation and polarized continuum model (PCM) approaches. In the most stable conformations of M(H2cys)2+ and M(Hcys)+ complexes (M?=?Hg2+, Cd2+, and Zn2+), the SH group of the cysteine moiety is already deprotonated and undergoes strong binding with the metal ion. Among Hg(H2cys)2+ complexes, cysteine complexes of Hg2+ without deprotonation of the SH group and mercury(II) carboxylato-type structures are at least 83 and 117?kJ/mol less stable in energy than the most stable complex (B3LYP/6-311++G(d,p)-SDD+d+f//B3LYP/6-31G(d)-SDD+d). Although Zn2+ binds more strongly than Hg2+ to a H2cys molecule at the high-level CCSD(T)/6-311++G(d,p)-SDD+d+f//B3LYP/6-311++G(d,p)-SDD+d+f level, Hg(H2O)2]2+ is stronger than Zn(H2O)2]2+ because the deformation of Zn(H2O)2]2+ required to bind to cys is much more than in Hg(H2O)2]2+. Complexes with a deprotonated cysteine, M(Hcys)+ and M(cys), prefer a multidentate structure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号