首页 | 本学科首页   官方微博 | 高级检索  
     


Rogue waves, dissipation, and downshifting
Authors:A. IslasC.M. Schober
Affiliation:
  • Department of Mathematics, University of Central Florida, Orlando, FL, United States
  • Abstract:We investigate the effects of dissipation on the development of rogue waves and downshifting by adding nonlinear and linear damping terms to the one-dimensional Dysthe equation. Significantly, rogue waves do not develop after the downshifting becomes permanent. Thus in our experiments permanent downshifting serves as an indicator that damping is sufficient to prevent the further development of rogue waves. Using the inverse spectral theory of the NLS equation, simulations of the damped Dysthe equation for sea states characterized by JONSWAP spectrum consistently show that rogue wave events are well-predicted by proximity to homoclinic data, as measured by the spectral splitting distance δ. The cut off distance δcutoff decreases as the strength of the damping increases, indicating that for stronger damping the JONSWAP initial data must be closer to homoclinic data for rogue waves to occur.
    Keywords:Rogue waves   Freak waves   Downshifting   Nonlinear damping   Nonlinear Schrö  dinger equation   Dysthe equation
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号