首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The importance of aromatic-type interactions in serotonin synthesis: protein-ligand interactions in tryptophan hydroxylase and aromatic amino acid decarboxylase
Authors:Hofto Laura R  Lee Caroline E  Cafiero Mauricio
Institution:Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, USA.
Abstract:The biosynthesis of serotonin requires aromatic substrates to be bound in the active sites of the enzymes tryptophan hydroxylase and aromatic amino acid decarboxylase. These aromatic substrates are held in place partially by dispersion and induction interactions with the enzymes' aromatic amino acid residues. Mutations that decrease substrate binding can result in a decrease in serotonin production and thus can lead to depression and related disorders. We use optimized crystal structures of these two enzymes to examine pair-wise electronic interaction energies between aromatic residues in the active sites and the aromatic ligands. We also perform in silico mutations on the aromatic residues to determine the change in interaction energies as mutations occur. Our second-order Moller-Plessett perturbation theory calculations show that drastic changes in interaction energy can occur and, in light of our previous work, we are able to use these data to offer predictions on the loss of protein function and on the possibility of disease upon mutation. We also examine local and gradient corrected density functional theory methods to evaluate their ability to predict these induction/dispersion-dominated interaction energies. We find that the hybrid B3LYP cannot model these interactions well, whereas the GGA HCTH407 offers largely qualitatively correct results, and the local functional SVWN quantitatively mimics the MP2 results rather well.
Keywords:MP2  DFT  dispersion  aromatic  protein  enzyme
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号