首页 | 本学科首页   官方微博 | 高级检索  
     


Exact inference for a simple step-stress model from the exponential distribution under time constraint
Authors:N. Balakrishnan  Qihao Xie  D. Kundu
Affiliation:(1) Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada, L8S 4K1;(2) Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, 208016, India
Abstract:In reliability and life-testing experiments, the researcher is often interested in the effects of extreme or varying stress factors such as temperature, voltage and load on the lifetimes of experimental units. Step-stress test, which is a special class of accelerated life-tests, allows the experimenter to increase the stress levels at fixed times during the experiment in order to obtain information on the parameters of the life distributions more quickly than under normal operating conditions. In this paper, we consider the simple step-stress model from the exponential distribution when there is time constraint on the duration of the experiment. We derive the maximum likelihood estimators (MLEs) of the parameters assuming a cumulative exposure model with lifetimes being exponentially distributed. The exact distributions of the MLEs of parameters are obtained through the use of conditional moment generating functions. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs and the parametric bootstrap methods, and assess their performance through a Monte Carlo simulation study. Finally, we present two examples to illustrate all the methods of inference discussed here.
Keywords:Accelerated testing  Bootstrap method  Conditional moment generating function  Coverage probability  Cumulative exposure model  Exponential distribution  Maximum likelihood estimation  Order statistics  Step-stress models  Tail probability  Type-I censoring
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号