首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Light production in alkaline mixtures of reducing agents and dimethylbiacridylium nitrate.
Authors:J R Totter
Abstract:Abstract— Kinetic studies were made of light production and 02 absorption elicited by treatment of dimethylbiacridylium hydroxide D(OH)2] with reducing agents in alkaline aqueous solutions. D(OH)2 addition stimulated O2 uptake which proceeded with zero-order kinetics until nearly all of the O2 or of the D(OH)2 was converted to end products. At the termination of the reactions with fructose as reductant the D(OH)2 was converted to methylacridone and to dimethylbiacridene each compound accounting for approximately one-half the D(OH)2 consumed. O2 was reduced to H2O2. With hydroxylamine as the reducing agent the emitted light intensity was related to the first power of the D(OH)2 concentration and the rate of O2 uptake to the square root of the D(OH)2. The disappearance of D(OH)2 in these circumstances was by a first order or pseudo-first order rate. Fructose as a reducing agent by contrast resulted in an O2 uptake nearly independent of D(OH)2 concentration over a range from 1 × 10-5M-1 × 10-4M, while the light intensity and disappearance of D(OH)2 followed a one-half order rate. O2 uptake was by zero order kinetics and the oxidation of fructose proceeded at the same rate as was found with ferricyanide as oxidant. The kinetics, quantum yields and temperature dependence of the fructose reactions were compared with similar reactions employing H2O2 as the light eliciting reagent. The results are interpreted as indicating that D(OH)2 acts as a chain initiator in a manner analogous to better known, radical producing compounds found to accelerate hydrocarbon autooxidations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号