首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Galvanic replacement of semiconductor phase I CuTCNQ microrods with KAuBr4 to fabricate CuTCNQ/Au nanocomposites with photocatalytic properties
Authors:Pearson Andrew  O'Mullane Anthony P  Bansal Vipul  Bhargava Suresh K
Institution:School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Australia.
Abstract:In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr(4) in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr(4), were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr(4) concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV-visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号