首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chain end-group selectivity using an organometallic Al(iii)/K(i) ring-opening copolymerization catalyst delivers high molar mass,monodisperse polyesters
Authors:Wilfred T Diment  Charlotte K Williams
Institution:Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA UK,
Abstract:Polyesters are important plastics, elastomers and fibres; efficient and selective polymerizations making predictable, high molar mass polymers are required. Here, a new type of catalyst for the ring-opening polymerization (ROCOP) of epoxides and anhydrides combines unusually high chain end-group selectivity, fast rates, and good molar mass control. The organometallic heterodinuclear Al(iii)/K(i) complex, applied with a diol, is tolerant to a range of epoxides/phthalic anhydride and produces only α,ω-hydroxyl telechelic polyesters with molar masses from 6–91 kg mol−1, in all cases with monomodal distributions. As proof of its potential, high molar mass poly(vinyl cyclohexene oxide-alt-phthalic anhydride) (91 kg mol−1) shows 5× greater flexural strain at break (εb = 3.7%) and 9× higher maximum flexural stress (σf = 72.3 MPa) than the previously accessed medium molar mass samples (24 kg mol−1). It is also enchains phthalic anhydride, vinyl cyclohexene oxide and ε-decalactone, via switchable catalysis, to make high molar mass triblock polyesters (81 kg mol−1, Đ = 1.04). This selective catalyst should be used in the future to qualify the properties of these ROCOP polyesters and to tune (multi)block polymer structures.

A heterodinuclear Al(iii)/K(i) organometallic ring-opening copolymerization catalyst shows exceptional rates, end-group selectivity and good loading tolerance to deliver monodisperse polyesters with molar masses up to 91 kg mol−1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号