首页 | 本学科首页   官方微博 | 高级检索  
     


Fast photodriven electron spin coherence transfer: a quantum gate based on a spin exchange j-jump
Authors:Lukáš Kobr  Daniel M Gardner  Amanda L Smeigh  Scott M Dyar  Steven D Karlen  Raanan Carmieli  Michael R Wasielewski
Affiliation:Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University , Evanston, Illinois 60208-3113, United States.
Abstract:Photoexcitation of the electron donor (D) within a linear, covalent donor-acceptor-acceptor molecule (D-A(1)-A(2)) in which A(1) = A(2) results in sub-nanosecond formation of a spin-coherent singlet radical ion pair state, (1)(D(+?)-A(1)(-?)-A(2)), for which the spin-spin exchange interaction is large: 2J = 79 ± 1 mT. Subsequent laser excitation of A(1)(-?) during the lifetime of (1)(D(+?)-A(1)(-?)-A(2)) rapidly produces (1)(D(+?)-A(1)-A(2)(-?)), which abruptly decreases 2J 3600-fold. Subsequent coherent spin evolution mixes (1)(D(+?)-A(1)-A(2)(-?)) with (3)(D(+?)-A(1)-A(2)(-?)), resulting in mixed states which display transient spin-polarized EPR transitions characteristic of a spin-correlated radical ion pair. These photodriven J-jump experiments show that it is possible to use fast laser pulses to transfer electron spin coherence between organic radical ion pairs and observe the results using an essentially background-free time-resolved EPR experiment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号