首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of binder melt flow on the leading edge flames of solid propellant sandwiches
Authors:K Gnanaprakash  SR Chakravarthy
Institution:Department of Aerospace Engineering & National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
Abstract:This study reports the effect of binder melt flow on the burning behaviour, specifically the burning rate controlling sites referred to as the leading edge flames (LEFs), of different types of sandwich propellants, namely, pure, micro-aluminized and nano-aluminized binder. The distance between the LEFs anchored over the lamina interface edges of sandwiches is measured from the combustion images captured under high spatio-temporal resolution. Similarly, the extent of binder melt flow is also measured from the quenched surfaces of sandwiches. The burning rate experiments are performed as well on sandwiches with different middle lamina contents and thicknesses at pressures of 2, 4 and 7 MPa. Two different curing agents are considered to examine the melt flow behaviour of the binder. The curing agent significantly influences the inter-LEF distance mainly in the case of pure binder sandwiches, however, its effect is negligible in aluminized binder sandwiches because of the presence of Al particles that impedes the flow to appreciable extent. Substantial protrusion of the middle lamina relative to the lamina interfaces is observed in micro-aluminized binder sandwiches due to significant accumulation of Al particles on the burning surface. In the case of nano-aluminized binder sandwiches, such protrusion is relatively marginal since nano-Al particles burn quickly, which enables the gas phase flame to locate close to the burning surface, although the extent of Al accumulation is considerably more than in the former case. This causes the nano-aluminized binder sandwiches as a whole to burn significantly faster than the other two cases in the pressure range (<7 MPa) where the LEFs predominantly control the sandwich burning rates.
Keywords:Binder melt flow  Inter-LEF distance  Melt layer width  Micro/nano-aluminium
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号