首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pressure and temperature dependence of soot in highly controlled counterflow ethylene diffusion flames
Authors:Kevin Gleason  Francesco Carbone  Alessandro Gomez
Institution:Yale Center for Combustion Studies, Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520-8286, USA
Abstract:Soot volume fraction and dispersion index were measured by pyrometry in a series of highly controlled counterflow diffusion flames, with peak temperatures, Tmax, spanning a few hundred degrees and pressure covering the 0.1–0.8 MPa range. An unprecedented level of control was implemented by selecting flames with a self-similar structure to ensure that the normalized temperature-time history experienced by the reactants was the same, regardless of pressure. The self-similarity was verified by suitably rescaling the transverse coordinate with respect to a characteristic diffusion length. At constant Tmax, the soot volume fraction increases approximately by two orders of magnitude as the pressure is raised from 1 atm to 4 atm, and by one to two additional orders of magnitude with an additional doubling of the pressure to 8 atm. At constant pressure, the soot load spans two to three orders of magnitude and soot formation exhibits increased sensitivity to temperature as the pressure is raised. Soot inception occurs near the flame, with an increase in soot concentration that becomes steeper at higher Tmax. The increase is accompanied by a decrease in the dispersion exponent that is suggestive of dehydrogenation and aging of the particles and is sharper at higher Tmax. Soot experiences continuous growth in a monotonically decreasing temperature field until it is convected away radially at the stagnation plane, with essentially no opportunity for oxidation. Evidence of two distinct mechanisms for soot formation was found: the classic high temperature, high activation energy process affecting soot formed in the vicinity of the flame and followed by dehydrogenation; and a relatively low-temperature, zero activation energy process, associated with the increase in volume fraction at low-temperatures in proximity of the stagnation plane. The latter is tentatively attributed to dimerization of aromatics, as revealed by the concurrent increase in the dispersion index corresponding to an increase in the particle hydrogen content.
Keywords:Diffusion flames  Counterflow  Soot formation  Pyrometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号