首页 | 本学科首页   官方微博 | 高级检索  
     


Burning characteristics of candle flames in sub-atmospheric pressures: An experimental study and scaling analysis
Authors:Adriana Palacios
Affiliation:1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China;2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China;3. Department of Chemical, Food and Environmental Engineering, Fundacion Universidad de las Americas, Puebla 72810, Mexico;4. Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Abstract:Burning characteristics (mass burning rate, natural convection boundary layer thickness, flame height and dark zone height) of laminar diffusion flames produced by a candle at sub-atmospheric pressures in the range of P?=?50–100?kPa were experimentally studied in a reduced-pressure chamber; such data are not reported to date. Scaling analysis was performed to interpret the pressure dependence. The new experimental findings for candle flames in the sub-atmospheric pressures were well interpreted by the proposed scaling laws: (1) the mass burning rate was higher for a candle with larger wick length, and it increased with increasing ambient pressure, a stagnant layer B-number model based on natural convection boundary (flame boundary layer thickness) was developed to scale the mass burning rate of candle flames at various pressures; (2) the flame boundary layer thickness was wider in lower pressure and can be well represented by a natural convection boundary layer solution; (3) flame height was higher for a candle with larger wick length, meanwhile the ratio of flame height to burning rate was independent of pressure; (4) the flame dark zone height representing a soot formation length scale changes little with pressure, meanwhile its ratio to the total flame height is scaled with pressure by P?1/2/Lw,e3/4 (Lw,e is effective wick length inside flame). This work provided new experimental data and scaling laws of candle flame behaviors in sub-atmospheric pressures, which provided information for future characterization and soot modeling for diffusion flames associated with melting and evaporation processes of solid fuels.
Keywords:Candle flame  Sub-atmospheric pressure  Mass burning rate  Flame height and dark zone height
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号