首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Condensed-phase relaxation of multilevel quantum systems. II. Comparison of path integral calculations and second-order relaxation theory for a nondegenerate three-level system
Authors:Peter Simone  Evans Deborah G  Coalson Rob D
Institution:Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Abstract:An exactly solvable model of multisite condensed-phase vibrational relaxation was studied in Paper I (Peter, S.; Evans, D. G.; Coalson, R. D. J. Phys. Chem. B 2006, 110, 18758.), where it was shown that long-time steady-state site populations of a degenerate N-level system are not equal (hence, they are non-Boltzmann) and depend on the initial preparation of the system and the number of sites that it comprises. Here we consider a generalization of the model to the case of a nondegenerate three-level system coupled to a high-dimensional bath: such a model system has direct relevance to a large class of donor-bridge-acceptor electron transfer processes. Because the quantum dynamics of this system cannot be computed analytically, we compare numerically exact path integral calculations to the predictions of second-order time-local relaxation theory. For modest system-bath coupling strengths, the two sets of results are in excellent agreement. They show that non-Boltzmann long-time steady-state site populations are obtained when the level splitting is small but nonzero, whereas at larger values of the system bias (asymmetry) these populations become Boltzmann distributed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号