首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulations of the spreading of a vesicle on a substrate surface mediated by receptor-ligand binding
Authors:P Liu  QH Cheng
Institution:a Institute of High Performance Computing, Singapore 117528, Singapore
b Department of Materials Science and Engineering, National University of Singapore, Singapore 119260, Singapore
Abstract:A continuum model was introduced for the adhesion of vesicles to substrate surfaces. In the model, the vesicle membrane was assumed to be a closed shell with hyperelasticity. The vesicle cavity is filled with a liquid of fixed volume. The receptors on the membrane are mobile and initially uniformly distributed while the ligands on the substrate surface are fixed and also uniformly distributed. The formation of localized regions of tight binding between receptors and ligands, results in vesicle adhesion to the substrate surface. An adhesive model was introduced to describe the adhesive interaction between the receptors and the ligands. The growth of the adhesion area occurs via recruiting receptors from the non-adhered region through diffusion. Finite-element methods were used to solve the governing equations for the deformation of the vesicle and the receptor diffusion on the membrane surface. Effects of the membrane stiffness, the cohesive parameters and the receptor density on the adhesion kinetics of the vesicle were studied. In addition, the instability of the advancing front of the adhesion was also analyzed.
Keywords:Adhesion  Surface diffusion  Membrane  Vesicle  Finite elements
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号