首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: Geometrically necessary dislocation densities
Authors:Jeffrey W Kysar  Yong X Gan  Timothy L Morse  Milton E Jones
Institution:a Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
b Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 West 120th Street, New York, NY 10027, USA
Abstract:Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.
Keywords:Indentation and hardness  Dislocations  Metallic materials  Crystal plasticity  Electron microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号