首页 | 本学科首页   官方微博 | 高级检索  
     


Electronic state of Fe used as Mössbauer probe in the perovskites LaMO3 (M=Ni and Cu)
Authors:Igor Presniakov  Alexei Baranov  Alexei Sobolev  Viyacheslav Rusakov
Affiliation:a Lomonosov Moscow State University, 119992 Leninskie Gory, Moscow, Russia
b ICMCB, CNRS, University BORDEAUX 1 “Sciences and Technologies”, site de l’ENSCPB-87, Avenue du Dr A. Schweitzer, 33608 PESSAC Cedex, France
Abstract:For the first time a comparative study of rhombohedral LaNiO3 and LaCuO3 oxides, using 57Fe Mössbauer probe spectroscopy (1% atomic rate), has been carried out. In spite of the fact that both oxides are characterized by similar crystal structure and metallic properties, the behavior of 57Fe probe atoms in such lattices appears essentially different. In the case of LaNi0.99Fe0.01O3, the observed isomer shift (δ) value corresponds to Fe3+ (3d5) cations in high-spin state located in an oxygen octahedral surrounding. In contrast, for the LaCu0.99Fe0.01O3, the obtained δ value is comparable to that characterizing the formally tetravalent high-spin Fe4+(3d4) cations in octahedral coordination within Fe(IV) perovskite-like ferrates. To explain such a difference, an approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that in the case of LaNi0.99Fe0.01O3, electronic state of nickel is dominated by the d7 configuration corresponding to the formal ionic “Ni3+-O2−” state. On the other hand, in the case of LaCu0.99Fe0.01O3 a large amount of charge is transferred via Cu-O bonds from the O:2p bands to the Cu:3d orbitals and the ground state is dominated by the d9L configuration (“Cu2+−O” state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3++O(L)→Fe4++O2−, which transforms “Fe3+” into “Fe4+” state. The analysis of the isomer shift value for the formally “Fe4+” ions in perovskite-like oxides clearly proved a drastic influence of the 4s iron orbitals population on the Fe−O bonds character.
Keywords:Ni3+ and Cu3+ perovskites   57Fe Mö  ssbauer probe    ssbauer study   Charge transfer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号