首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses
Institution:1. State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China;2. Baicheng Municipal Party Committee Office, Baicheng 137000, China
Abstract:The horizontal flow anaerobic digester indicated that high ammonia (2923 mg/L) and SO42? (3653 mg/L) would influence the performance of methane production with food waste as substrates. Therefore, bottle anaerobic digestion reactors were carried out to investigate the effect of ammonia/sulfate concentrations on the methane production. Experimental results manifested that the anaerobic digesters with an ammonia concentration of 3500 mg/L or sulfate of 1600 mg/L showed the best performance of methane production, with an average methane yield of 0.32 and 0.33 L (g VS)?1 d?1, respectively. Specifically, a higher ammonia (6500 mg/L) or sulfate (1600-3500 mg/L) level hindered the bioconversion of C from liquid to gas phase (2.68% or 1.73% CH4-Gas, respectively), while insignificantly for the hydrolyzation of C and N from solid to liquid phase. Similar to sulfate, high ammonia nitrogen seriously inhibited the methanation process, leading to a significant carbon accumulation in the anaerobic reactor, especially for propionic acid. The predominant archaea Methanosarcina at genus level indicated that aceticlastic methanogenesis was the major methanogenic pathway. Meanwhile, high ammonia level suppressed the activity of Methanosarcina, while modest sulfate improved H2-consuming methanogens activity. A large fraction of unclassified bacteria within the Firmicutes (43.78%-63.17%) and Bacteroidetes (24.20%-33.30%) phylum played an important role in substrates hydrolysis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号