首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries
Institution:College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
Abstract:Due to the abundant sodium reserves and high safety, sodium ion batteries (SIBs) are foreseen a promising future. While, hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages. However, the unsatisfactory initial coulombic efficiency (ICE) is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application. Herein, with spherical nano SiO2 as pore-forming agent, gelatin and polytetrafluoroethylene as carbon sources, a multi-porous carbon (MPC) material can be easily obtained via a co-pyrolysis method, by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases. As a result, the MPC anode exhibited remarkable ICE of 83% and a high rate capability (208 mAh/g at 5 A/g) when used in sodium-ion half cells. Additionally, coupling with Na3V2(PO4)3 as the cathode to assemble full cells, the as-fabricated MPC//NVP full cell delivered a good rate capability (146 mAh/g at 5 A/g) as well, implying a good application prospect the MPC anode has
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号