首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photocatalytic fuel cell for simultaneous antibiotic wastewater treatment and electricity production by anatase TiO2 nanoparticles anchored on Ni foam
Institution:1. Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;2. College of Chemistry, Beijing Normal University, Beijing 100875, China;3. Laboratory for Micro-sized Functional Materials & College of Elementary Education, Capital Normal University, Beijing 100048, China
Abstract:Photocatalytic fuel cell (PFC) holds great potential for the sustainable production of electricity and degradation of organic pollutants for solving global energy and environmental problems. However, the efficient photodegradation of organic dyes and antibiotic drugs, such as ciprofloxacin (CIP) and methylene blue (MB), remains challenging. Aiming at improving the separation efficiency of hole and electron for electricity generation in the PFC system, TiO2-NPs@NF-x photoanode was fabricated by a cost-effective and laborsaving hydrothermal approach. The as-fabricated photoanode demonstrated abundant active sites, enhanced light harvesting capacity and photogenerated charge carrier separation. At a CIP-HCl concentration of 10 mg/L and pH value of about 7, 85% of CIP-HCl can be efficiently removed after 3 h irradiation by 300 W Xe lamp. TiO2-NPs@NF-20 photoelectrode based PFC system exhibited an impressed ability to simultaneously degrade ciprofloxacin and generate electricity under light irradiation with an open circuit voltage of 1.021 V, short circuit current density and maximum power density of 2.4 mA/cm2, 0.357 mW/cm2, respectively. This work provided a cost-effective method for the treatment of organic waste and generation of electrical power.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号