首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-performance bulk heterojunction-based photocathode with facile architecture for photoelectrochemical water splitting
Institution:1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
Abstract:Organic semiconductors are promising candidates as photoactive layers for photoelectrodes used in photoelectrochemical (PEC) cells due to their excellent light absorption and efficient charge transport properties with the help of interfacial materials. However, the use of multilayers will make the charge transfer mechanism more complicated and decrease the PEC performance of the photoelectrode caused by the increased contact resistance. In this work, a PM6:Y6 bulk heterojunction (BHJ)-based photocathode is fabricated for efficient PEC hydrogen evolution reaction (HER) in an acidic aqueous solution. With RuO2 as an interfacial modification layer, the photocathode with a simple structure (fluorine-doped tin oxide (FTO)/PM6:Y6/RuO2) generates a maximum photocurrent density up to ?15 mA/cm2 at 0 V vs. reference hydrogen electrode (RHE), outperforming all previously reported BHJ-based photocathodes in terms of PEC performance. The highest ratiometric power-saved efficiency of 3.7% is achieved at 0.4 V vs. RHE.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号