首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Developing high-quality g-C3N4 film electrode for the photoelectrocatalytic degradation of methylene blue in water
Institution:1. China University of Mining and Technology-Beijing, Beijing 100083,China;2. Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085,China
Abstract:Developing a high-quality photoelectrode for photoelectrochemical applications is still an ongoing challenge. In this study, we prepared the g-C3N4 film on the indium tin oxide (ITO) glass through conventional coating, liquid-based growth, in-situ calcination, and vapor deposition methods, respectively. These electrodes were characterized and used as photoanodes to degrade methylene blue (MB) in water. Among these methods, the in-situ calcination method was most appropriate for preparing the continuous and organized g-C3N4 film electrodes with uniform g-C3N4 coverage and strong adhesion to the ITO substrate. It also had the highest activity in the photocatalytic (PC), electrochemical (EC), and photoelectrocatalytic (PEC) degradation processes of MB. In the PEC reaction, at an applied potential of 1.0 V and a light intensity of 0.96 W/cm2, the removal rate of MB was 62.5%, which was much higher than those in the PC and EC reactions. The high degradation rate was due to the synergistic effect of PEC degradation, wherein the PC and EC reactions promote and optimize each other. In the PC reaction, MB was degraded by ?CH3 elimination, while the EC degradation pathway mainly included the conversion of sulfhydryl into sulfoxide and the opening of the central aromatic ring. Both methyl loss and aromatic ring opening occurred in the PEC reaction. Moreover, some monocyclic compounds were formed, and MB showed more complete degradation in the PEC reaction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号