首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identification of cadmium containing metabolites in HepG2 cells after treatment with cadmium-selenium quantum dots
Institution:Department of Chemistry, Wuhan University, Wuhan 430072, China
Abstract:The transformation of quantum dots (QDs) by organisms has attracted broad attention but remains unclear. Understanding of the metabolites helps to reveal the transformation pathway of QDs. Cd containing-metallothionein (MT) are the main species formed by Cd released from CdSe QDs in HepG2 cells, while speciation analysis of Cd containing MTs remains a challenge because MTs has several subisoforms and can bind with several metals. Herein, we built a hyphenated platform for speciation analysis of QDs in HepG2 cells after treatment with CdSe/ZnS QDs. The Cd-containing MTs were separated in reversed phase high performance liquid chromatography (RP-HPLC) and subsequently online detected by inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) parallelly. Four groups of Cd-containing metabolites were found by detecting Cd in ICP-MS. Their structures were identified in ESI-Q-TOF-MS and further confirmed with standards of four subisoforms of MT, including N-terminal acetylation MT2a, N-terminal acetylation MT1e, N-terminal acetylation MT1g and MT1m. Each group of them contains various stoichiometry of Cd/Zn. The metabolites of QDs remain same while the concentrations of each metabolite and its stoichiometry of Cd/Zn vary for different incubation concentration/time. This work provides a new parallel hyphenation technique of HPLC-ICP-MS/ESI-MS with high separation resolution and powerful detection ability, and the obtained results provide detailed metabolism information of QDs in HepG2 cells after treatment of CdSe/ZnS QDs, contributing to deep exploration of the functional mechanisms of QDs in organisms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号