首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art,prospects, and future challenges
Authors:Email author" target="_blank">Torsten?C?SchmidtEmail author  Luc?Zwank  Martin?Elsner  Michael?Berg  Rainer?U?Meckenstock  Stefan?B?Haderlein
Institution:(1) Environmental Mineralogy, Center for Applied Geoscience, Eberhard-Karls-University Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany;(2) Swiss Federal Institute for Environmental Science and Technology (EAWAG), Ueberlandstr. 133, 8600 Dübendorf, Switzerland;(3) Present address: Institute for Hydrology, GSF-Research Center for Environment and Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Abstract:Compound-specific stable isotope analysis (CSIA) using gas chromatography-isotope ratio mass spectrometry (GC/IRMS) has developed into a mature analytical method in many application areas over the last decade. This is in particular true for carbon isotope analysis, whereas measurements of the other elements amenable to CSIA (hydrogen, nitrogen, oxygen) are much less routine. In environmental sciences, successful applications to date include (i) the allocation of contaminant sources on a local, regional, and global scale, (ii) the identification and quantification of (bio)transformation reactions on scales ranging from batch experiments to contaminated field sites, and (iii) the characterization of elementary reaction mechanisms that govern product formation. These three application areas are discussed in detail. The investigated spectrum of compounds comprises mainly n-alkanes, monoaromatics such as benzene and toluene, methyl tert-butyl ether (MTBE), polycyclic aromatic hydrocarbons (PAHs), and chlorinated hydrocarbons such as tetrachloromethane, trichloroethylene, and polychlorinated biphenyls (PCBs). Future research directions are primarily set by the state of the art in analytical instrumentation and method development. Approaches to utilize HPLC separation in CSIA, the enhancement of sensitivity of CSIA to allow field investigations in the µg L–1 range, and the development of methods for CSIA of other elements are reviewed. Furthermore, an alternative scheme to evaluate isotope data is outlined that would enable estimates of position-specific kinetic isotope effects and, thus, allow one to extract mechanistic chemical and biochemical information.Abbreviations BTEX benzene, toluene, ethylbenzene, xylenes - MTBE methyl tert-butyl ether - PAHs polycyclic aromatic hydrocarbons - VOCs volatile compounds - PCBs polychlorinated biphenyls - CSIA compound-specific (stable) isotope (ratio) analysis - GC-IRMS, GC/IRMS or GCIRMS gas chromatography-isotope ratio mass spectrometry - GC-C-IRMS, GC/C/IRMS or GCC-IRMS gas chromatography-combustion-isotope ratio mass spectrometry - irmGC/MS isotope ratio monitoring gas chromatograph-mass spectrometry - GC/P/IRMS gas chromatography-pyrolysis-isotope ratio mass spectrometry (used for D/H) - KIE kinetic isotope effect - PSIA position-specific isotope analysis (for intramolecular isotope distribution) - SNIF-NMR site-specific natural isotopic fractionation by nuclear magnetic resonance spectroscopy
Keywords:CSIA  IRMS  Isotope fractionation  Isotope ratio  Isotopic shift  Fingerprinting  Source allocation  Biodegradation  Degradation  Transformation  Weathering  Environmental forensics  Geomicrobiology  Contaminant hydrology  SPME  Purge and trap                13C  D/H  Primary isotope effect  Secondary isotope effect  Kinetic isotope effect  Rayleigh equation  Chloromethane  Tetrachloromethane  Trichloroethylene  Tetrachloroethylene  Methane  Perylene  Creosote  Sulfate  Chlorinated solvents  PAH  PCB  Aromatic hydrocarbon  Biogenic  Petrogenic  BTEX  VOC
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号