首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的人体虚拟惯性测量组件构建方法
引用本文:钱伟行,祝燕华,谢非,王云涛,张研,宋天威. 基于机器学习的人体虚拟惯性测量组件构建方法[J]. 中国惯性技术学报, 2017, 0(3): 289-293. DOI: 10.13695/j.cnki.12-1222/o3.2017.03.002
作者姓名:钱伟行  祝燕华  谢非  王云涛  张研  宋天威
作者单位:1. 南京师范大学电气与自动化工程学院,南京,210042;2. 东南大学仪器科学与工程学院,南京,210096
基金项目:国家自然科学基金(61304227;61601228),江苏省自然科学基金(BK20141453
摘    要:利用人体特征辅助行人导航与外骨骼机器人控制是近年来导航与机器人领域中的热点研究方向。针对惯性测量组件足部安装方式在过载较高时无法实现有效测量的问题,研究了一种基于机器学习的人体虚拟惯性测量组件构建方法。该方法以同步采集安装于足部与下肢其他部位的惯性测量组件的输出作为数据样本,通过遗传算法改进的误差反向传播(GA-BP)神经网络实现虚拟惯性测量组件的构建。为进一步改善训练效果,采用基于步态相位检测方法对训练样本进行筛选。基于Anybody与MATLAB的联合仿真结果表明,本文所研究的方法可实现采用安装于髋关节附近位置的惯性测量组件数据,有效模拟足部位置的惯性测量组件数据。该方法对未经训练的步态也有一定的适应性。本文所研究的方法可进一步应用于行人精确定位与外骨骼机器人控制等领域。

关 键 词:人体运动学模型  虚拟传感器  机器学习  步态检测  行人导航

Construction of human body virtual inertial measurement component based on machine learning
QIAN Wei-xing,ZHU Yan-hua,XIE Fei,WANG Yun-tao,ZHANG Yan,SONG Tian-wei. Construction of human body virtual inertial measurement component based on machine learning[J]. Journal of Chinese Inertial Technology, 2017, 0(3): 289-293. DOI: 10.13695/j.cnki.12-1222/o3.2017.03.002
Authors:QIAN Wei-xing  ZHU Yan-hua  XIE Fei  WANG Yun-tao  ZHANG Yan  SONG Tian-wei
Abstract:In recent years,utilizing human characteristics to assist pedestrian navigation and exoskeleton robot control is one of the hot research directions in the navigation and robotic fields.Aiming at the problem that the foot mounting method of inertial measurement module cannot achieve effective measurement at high overload,a method for constructing virtual inertial measurement component of human-body based on machine learning is studied.With the data samples being taken from the simultaneous measurements of the inertial measurement components installed on the foot and the other parts of lower limbs,the construction of the virtual inertial measurement component is realized by the genetic algorithm improved error back propagation (GA-BP) neural network.In order to further improve the training effect,the training samples are screened based on gait phase detection.The joint simulation results based on Anybody and MATLAB show that the proposed method can be used to simulate the inertial measurement component's output data of the foot position by using the inertial measurement component installed near the hip joint,and also has certain adaptability to the untrained gaits.The proposed method can also be applied in the fields of pedestrian precise positioning and exoskeleton robot control.
Keywords:human kinematics model  virtual sensor  machine learning  gait detection  pedestrian navigation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号