首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic solution of the thin viscous shock layer equations at low Reynolds numbers for a cold surface
Authors:I. G. Brykina
Abstract:Hypersonic three-dimensional viscous rarefied gas flow past blunt bodies in the neighborhood of the stagnation line is considered. The question of the applicability of the gasdynamic thin viscous shock layer model [1] is investigated for the transition flow regime from continuum to free-molecular flow. It is shown that for a power-law temperature dependence of the viscosity coefficient mgrsimTohgr the quantity (Reepsi)1/(1+ohgr), where epsi = (gamma – 1)/2gamma and gamma is the specific heat ratio, is an important determining parameter of the hypersonic flow at low Reynolds numbers. In the case of a cold surface approximate asymptotic solutions of the thin viscous shock layer equations are obtained for noslip conditions on the surface and generalized Rankine-Hugoniot relations on the shock wave at low Reynolds numbers. These solutions give simple analytic expressions for the thermal conductivity and friction coefficients as functions of the determining flow parameters. As the Reynolds number tends to zero, the values of the thermal conductivity and friction coefficients determined by this solution tend to their values in free-molecular flow for an accommodation coefficient equal to unity. This tending of the thermal conductivity and friction coefficients to the free-molecular limit takes place for both two-and three-dimensional flows. The asymptotic solutions are compared with numerical calculations and experimental data.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 159–170. Original Russian Text Copyright © 2004 by Brykina.
Keywords:hypersonic flow  low Reynolds numbers  thermal conductivity and friction coefficients  thin viscous shock layer  asymptotic solution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号