首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of immersion silver and tin printed-circuit-board surface finishes in lead-free solder applications
Authors:Minna Arra  Dongkai Shangguan  Dongji Xie  Janne Sundelin  Toivo Lepistö  Eero Ristolainen
Institution:(1) Flextronics International, 33210 Tampere, Finland;(2) Flextronics International, 95131 San Jose, CA;(3) Institute of Materials Science, Tampere University of Technology, Tampere, Finland;(4) Institute of Electronics, Tampere University of Technology, Tampere, Finland
Abstract:The wetting of I-Ag (immersion silver) and I-Sn (immersion tin) printed-circuit-board (PCB) finishes by Sn/Ag/Cu and eutectic Sn/Pb solders was studied in this work with Ni/Au (electroless nickel/immersion gold) and organic solderability preservative (OSP) finishes as baselines. Wetting tests were performed on fresh boards and boards subjected to different preconditioning treatments that simulated the effects of aging, storage, and multiple reflow cycles. When the boards are fresh, the wetting of the I-Sn and Ni/Au finishes is better than that on the I-Ag and OSP finishes. However, after the preconditioning treatments, the wetting of the I-Sn finish degrades the fastest, whereas the wetting of the I-Ag and OSP finishes degrade less through the different preconditioning treatments. The wetting of the Ni/Au finish remains excellent through all the preconditioning treatments. The chemical and microstructural changes in the finishes during aging treatments were evaluated using electron spectroscopy chemical analysis (ESCA), x-ray diffractometry (XRD), and cross-sectioning followed by scanning electron microscopy (SEM). The results indicate that a single lead-free reflow cycle consumes the I-Sn layer faster than a Sn/Pb reflow cycle because of the formation of the Sn/Cu intermetallic compound (IMC). Consequently, I-Sn finished boards having an original Sn thickness of ∼1 μm will not withstand multiple lead-free reflow cycles without significant degradation in wetting but up to two Sn/Pb reflow cycles are still feasible. The minimum thickness of I-Sn required for adequate wetting was evaluated by comparing the wetting after different aging treatments. The exposure of I-Sn samples to 85°C/85% relative humidity (RH) conditions increases the thickness of the Sn-oxide layer, which, above a certain thickness, can degrade wetting. Oxidized copper areas formed on top of the I-Ag surface after exposure to 85°C/85% RH treatment, and this was considered a major factor influencing wetting. The formation of sulfides on I-Ag was detected, but their overall quantity remained too small to have a detectable impact on the wetting.
Keywords:Immersion tin  immersion silver  lead-free  wetting  aging
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号