首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An efficient methodology to study cyclodextrin clusters: application to α-CD hydrated monomer, dimer, trimer and tetramer
Authors:Clebio S Nascimento Jr  Cleber P A Anconi  Juliana F Lopes  Hélio F Dos Santos  Wagner B De Almeida
Institution:(1) LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Universitário, Pampulha, Belo Horizonte, MG, 31270-901, Brazil;(2) NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG, 36036-900, Brazil
Abstract:The hydrated α-cyclodextrin (α-CD) clusters resulting from the following process: nα-CD + n(H2O)6 → α-CDn · 6nH2O, with n = 1, 2, 3, 4, have been investigated using semiempirical (PM3), ab initio Hartree-Fock and Density Functional Theory (BLYP functional) levels of theory. The largest structure containing 576 atoms and 5,760 contracted basis functions (6-31G(d,p) basis set) poses as a considerable hard task for quantum chemical calculations. As the number of basis function increases rapidly with the cluster size, an alternative procedure to make the calculations feasible is certainly welcome, in order to perform BLYP calculations with an adequate basis set. Through the aid of a computer program that we developed, it became of practical use the selection of atom by atom basis sets, using the common chemical sense, enabling quantum mechanical calculations to be performed for very large molecular interacting systems (inclusion complexes), at an affordable computational cost. In this article we show how an appropriate selection of basis functions, leaving the CHn groups with a minimal basis set and the oxygen atoms (and OH groups) with a better quality basis set, lower considerably the computational cost with no significant loss in the calculated interaction energies. A regular pattern is observed for α-CD hydrated monomer, dimer, trimer and tetramer, therefore adding support to the use of this procedure when studying larger hydrogen bonded clusters where electron correlation effects are important. We show that the procedure reported here enables DFT calculations for hydrated cyclodextrin using basis set up to the 6-311++G(3df,3pd) triple zeta quality .
Keywords:Cyclodextrin  DFT  Inclusion complex  Interaction energy  Molecular structure  Supramolecular chemistry
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号