首页 | 本学科首页   官方微博 | 高级检索  
     检索      

La-Ce共掺杂锐钛矿TiO2的缺陷形成能和电子结构分析
引用本文:谭敏,方志杰,王栋,张金省.La-Ce共掺杂锐钛矿TiO2的缺陷形成能和电子结构分析[J].原子与分子物理学报,2022,39(3):036008-178.
作者姓名:谭敏  方志杰  王栋  张金省
作者单位:柳州工学院,广西科技大学,柳州工学院,柳州工学院
摘    要:采用基于密度泛函的第一性原理研究了稀土元素La、Ce共掺杂锐钛矿相TiO2的缺陷形成能,缺陷电荷转变能级以及电子结构.研究发现,富氧状态下La、Ce掺杂以及La-Ce共掺的缺陷形成能均为负值,而贫氧状态下La、Ce掺杂形成能为正,表明La、Ce的掺杂TiO2只能在氧气氛制备条件下进行;替代Ti掺杂缺陷电荷转变能级计算结果表明:0/1-的缺陷电荷转变能级分别位于VBM上面0.522 eV及2.440 eV处;与纯锐钛矿相TiO2相比,La、Ce单掺杂以及La-Ce共掺杂均能减小TiO2的禁带宽度,但共掺杂体系的禁带宽度更窄,因此共掺杂体系将更有利于提高TiO2对可见光的响应能力和光催化性能.

关 键 词:TiO2  稀土元素共掺杂  第一性原理  缺陷形成能  转变能级
收稿时间:2021/1/1 0:00:00
修稿时间:2021/1/29 0:00:00

Analysis on Defect Formation Energy and Electronic Structure of La-Ce Co-doped Anatase TiO2
Tan Min,Fang Zhi-Jie,Wang Dong and Zhang Jin-Sheng.Analysis on Defect Formation Energy and Electronic Structure of La-Ce Co-doped Anatase TiO2[J].Journal of Atomic and Molecular Physics,2022,39(3):036008-178.
Authors:Tan Min  Fang Zhi-Jie  Wang Dong and Zhang Jin-Sheng
Institution:Liuzhou Institute of Technology,Guangxi University of Science and Technology,Liuzhou Institute of Technology and Liuzhou Institute of Technology
Abstract:Analysis on Defect Formation Energy and Electronic Structure of La-Ce Co-doped Anatase TiO2 Abstract: The defect formation energy, defect charge transition energy level and electronic structure of La-Ce co-doped anatase TiO2 were calculated by the first principle method based on density functional theory. The results show that, the defect formation energy of La, Ce doped TiO2 and La-Ce co-doped TiO2, are all negative in oxygen-rich state, but the formation energies of each defect state are all positive in oxygen-poor state, which indicate that La, Ce doped TiO2 can only be prepared in oxygen atmosphere. The results of replacing Ti doped defect charge transition levels show that, the defect charge transition levels of 0/1- are located at 0.522eV and 2.440eV above VBM respectively. Compared with pure anatase TiO2, La-doped, Ce-doped and La-Ce co-doped can all reduce the band gap width of TiO2, but the band gap width of co-doped pattern is narrower. Therefore, co-doped pattern will be more conducive to increase the visible light response ability and photocatalytic performance of TiO2.
Keywords:TiO2  Rare earth co-doped  first principle  defect formation energy  transition energy level  electronic structure
点击此处可从《原子与分子物理学报》浏览原始摘要信息
点击此处可从《原子与分子物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号