首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical approximation of conditional asymptotic variances using Monte Carlo simulation
Authors:Tak K. Mak  Fassil Nebebe
Affiliation:(1) Department of Decision Sciences and M.I.S., JMSB, Concordia University, 1455 De Maisonneuve West, Montreal, H3G 1M8, Canada
Abstract:We consider in this paper the use of Monte Carlo simulation to numerically approximate the asymptotic variance of an estimator of a population parameter. When the variance of an estimator does not exist in finite samples, the variance of its limiting distribution is often used for inferences. However, in this case, the numerical approximation of asymptotic variances is less straightforward, unless their analytical derivation is mathematically tractable. The method proposed does not assume the existence of variance in finite samples. If finite sample variance does exist, it provides a more efficient approximation than the one based on the convergence of finite sample variances. Furthermore, the results obtained will be potentially useful in evaluating and comparing different estimation procedures based on their asymptotic variances for various types of distributions. The method is also applicable in surveys where the sample size required to achieve a fixed margin of error is based on the asymptotic variance of the estimator. The proposed method can be routinely applied and alleviates the complex theoretical treatment usually associated with the analytical derivation of the asymptotic variance of an estimator which is often managed on a case by case basis. This is particularly appealing in view of the advance of modern computing technology. The proposed numerical approximation is based on the variances of a certain truncated statistic for two selected sample sizes, using a Richardson extrapolation type formulation. The variances of the truncated statistic for the two sample sizes are computed based on Monte Carlo simulations, and the theory for optimizing the computing resources is also given. The accuracy of the proposed method is numerically demonstrated in a classical errors-in-variables model where analytical results are available for the purpose of comparisons.
Keywords:Bootstrap variance estimator  Existence of variances  Sample size determination  Statistical computing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号