首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics calculation of half-lives for thermal decay of Lennard-Jones clusters
Authors:R W Smith
Institution:1. Independent Physics Laboratories, 3800 Rush Lake Rd., 48169, Pinckney, MI, USA
Abstract:Molecular dynamics has been used with a Lennard-Jones (6–12) potential in order to study the decay behavior of neutral Argon clusters containing between 12 and 14 atoms. The clusters were heated to temperatures well above their melting points and then tracked in time via molecular dynamics until evaporation of one or more atoms was observed. In each simulation, the mode of evaporation, energy released during evaporation, and cluster lifetime were recorded. Results from roughly 2000 simulation histories were combined in order to compute statistically significant values of cluster half-lives and decay energies. It was found that cluster half-life decreases with increasing energy and that for a given value of excess energy (defined asE=(E tot ?E gnd)/n), the 13 atom cluster is more stable against decay than clusters containing either 12 or 14 atoms. The dominant decay mechanism for all clusters was determined to be single atom emission.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号