首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The colloidal force of bead-spring chains in a good solvent
Authors:McCoy John D  Curro John G
Institution:Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA. mccoy@nmt.edu
Abstract:A recently developed density functional theory (DFT) for tethered bead-spring chains is used to investigate colloidal forces for the good solvent case. A planar surface of tethered chains is opposed to a bare, hard wall and the force exerted on the bare wall is calculated by way of the contact density. Previously, the case of large wall separation was investigated. The density profiles of the unperturbed chains, in that case, were found to be neither stepfunctions nor parabolas and were shown to accurately predict computer simulation results. In the present paper, the surface forces that result from the distortion of these density profiles at finite wall separation is studied. The resulting force function is analyzed for varying surface coverages, wall separations, and chain lengths. The results are found to be in near quantitative agreement with the scaling predictions of Alexander S. Alexander, J. Phys. (Paris) 38, 983 (1977)] when the layer thickness is "correctly" defined. Finally, a hybrid Alexander-DFT theory is suggested for the analysis of experimental results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号