Abstract: | The complexity of metabolic profiles makes chemometric tools indispensable for extracting the most significant information. Partial least‐squares discriminant analysis (PLS‐DA) acts as one of the most effective strategies for data analysis in metabonomics. However, its actual efficacy in metabonomics is often weakened by the high similarity of metabolic profiles, which contain excessive variables. To rectify this situation, particle swarm optimization (PSO) was introduced to improve PLS‐DA by simultaneously selecting the optimal sample and variable subsets, the appropriate variable weights, and the best number of latent variables (SVWL) in PLS‐DA, forming a new algorithm named PSO‐SVWL‐PLSDA. Combined with 1H nuclear magnetic resonance‐based metabonomics, PSO‐SVWL‐PLSDA was applied to recognize the patients with lung cancer from the healthy controls. PLS‐DA was also investigated as a comparison. Relatively to the recognition rates of 86% and 65%, which were yielded by PLS‐DA, respectively, for the training and test sets, those of 98.3% and 90% were offered by PSO‐SVWL‐PLSDA. Moreover, several most discriminative metabolites were identified by PSO‐SVWL‐PLSDA to aid the diagnosis of lung cancer, including lactate, glucose (α‐glucose and β‐glucose), threonine, valine, taurine, trimethylamine, glutamine, glycoprotein, proline, and lipid. Copyright © 2015 John Wiley & Sons, Ltd. |