首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sparse matrix multiplications for linear scaling electronic structure calculations in an atom-centered basis set using multiatom blocks
Authors:Saravanan Chandra  Shao Yihan  Baer Roi  Ross Philip N  Head-Gordon Martin
Institution:Department of Chemistry, University of California, Berkeley, California 94720, USA.
Abstract:A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package.
Keywords:linear scaling  electronic structure calculations  multiatom blocks
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号