Solution to a conjecture on the maximal energy of bipartite bicyclic graphs |
| |
Authors: | Bofeng Huo Shengjin Ji Yongtang Shi |
| |
Affiliation: | a Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China b Department of Mathematics and Information Science Qinghai Normal University, Xining 810008, China |
| |
Abstract: | The energy of a simple graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let Cn denote the cycle of order n and the graph obtained from joining two cycles C6 by a path Pn-12 with its two leaves. Let Bn denote the class of all bipartite bicyclic graphs but not the graph Ra,b, which is obtained from joining two cycles Ca and Cb (a,b≥10 and ) by an edge. In [I. Gutman, D. Vidovi?, Quest for molecular graphs with maximal energy: a computer experiment, J. Chem. Inf. Sci. 41(2001) 1002-1005], Gutman and Vidovi? conjectured that the bicyclic graph with maximal energy is , for n=14 and n≥16. In [X. Li, J. Zhang, On bicyclic graphs with maximal energy, Linear Algebra Appl. 427(2007) 87-98], Li and Zhang showed that the conjecture is true for graphs in the class Bn. However, they could not determine which of the two graphs Ra,b and has the maximal value of energy. In [B. Furtula, S. Radenkovi?, I. Gutman, Bicyclic molecular graphs with the greatest energy, J. Serb. Chem. Soc. 73(4)(2008) 431-433], numerical computations up to a+b=50 were reported, supporting the conjecture. So, it is still necessary to have a mathematical proof to this conjecture. This paper is to show that the energy of is larger than that of Ra,b, which proves the conjecture for bipartite bicyclic graphs. For non-bipartite bicyclic graphs, the conjecture is still open. |
| |
Keywords: | 05C50 05C35 92E10 |
本文献已被 ScienceDirect 等数据库收录! |
|