首页 | 本学科首页   官方微博 | 高级检索  
     


Surface modification of highly oriented pyrolytic graphite by reaction with atomic nitrogen at high temperatures
Authors:Luning Zhang,Du&scaron  an A. Pejakovi?,Baisong Geng,Jochen Marschall
Affiliation:a Molecular Physics Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
b Department of Physics, University of California, Berkeley, CA 94720, USA
Abstract:Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 °C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 °C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 °C show the D mode near 1360 cm−1, which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.
Keywords:HOPG   Graphene   Dry etching   Anisotropic etching   Hexagonal pits   Nitridation   N atoms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号