Structural and electrical properties of evaporated Fe thin films |
| |
Authors: | M. MebarkiA. Layadi A. GuittoumA. Benabbas B. GhebouliM. Saad N. Menni |
| |
Affiliation: | a Département de Physique, Université Ferhat Abbas, Sétif 19000, Algeria b Centre de Recherche Nucléaire d’Alger (CRNA), Alger 16000, Algeria c Laboratoire L.I.M.E, Université de Jijel, Jijel 18000, Algeria d Faculté des Sciences de l’Ingénieur, Université Ferhat Abbas, Sétif 19000, Algeria |
| |
Abstract: | Series of Fe thin films have been prepared by thermal evaporation onto glass and Si(1 0 0) substrates. The Rutherford backscattering (RBS), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the four point probe techniques have been used to investigate the structural and electrical properties of these Fe thin films as a function of the substrate, the Fe thickness t in the 76-431 nm range and the deposition rate. The Fe/Si samples have a 〈1 1 0〉 for all thicknesses, whereas the Fe/glass grows with a strong 〈1 0 0〉 texture; as t increases (>100 nm), the preferred orientation changes to 〈1 1 0〉. The compressive stress in Fe/Si remains constant over the whole thickness range and is greater than the one in Fe/glass which is relieved when t > 100 nm. The grain size D values are between 9.2 and 30 nm. The Fe/glass films are more electrically resistive than the Fe/Si(1 0 0) ones. Diffusion at the grain boundary seems to be the predominant factor in the electrical resistivity ρ values with the reflection coefficient R greater in Fe/glass than in Fe/Si. For the same thickness (100 nm), the decrease of the deposition rate from 4.3 to 0.3 Å/s did not affect the texture and the reflection coefficient R but led to an increase in D and a decrease in the strain and in ρ for both Fe/glass and Fe/Si systems. On the other hand, keeping the same deposition rate (0.3 Å/s) and increasing the thickness t from 76 to 100 nm induced different changes in the two systems. |
| |
Keywords: | Thin films Fe Structure XRD RBS SEM Electrical resistivity |
本文献已被 ScienceDirect 等数据库收录! |
|