首页 | 本学科首页   官方微博 | 高级检索  
     


Binding affinity properties of dendritic glycosides based on a beta-cyclodextrin core toward guest molecules and concanavalin A.
Authors:F Ortega-Caballero  J J Giménez-Martínez  L García-Fuentes  E Ortiz-Salmerón  F Santoyo-González  A Vargas-Berenguel
Affiliation:Area de Química Orgánica, Universidad de Almería, 04120 Almería, Spain.
Abstract:The inclusion behavior and concanavalin A binding properties of hepta-antennated and newly synthesized tetradeca-antennated C-6-branched mannopyranosyl and glucopyrannosyl cyclomaltoheptaose (beta-cyclodextrin) derivatives have been evaluated by isothermal titration microcalorimetry and enzyme-linked lectin assay (ELLA), respectively. The synthesis of three first-order dendrimers based on a beta-cyclodextrin core containing 14 1-thio-beta-D-glucose, 1-thio-beta-mannose, and 1-thio-beta-rhamnose residues was performed following a convergent approach and involving (1) preparation of a thiolated bis-branched glycoside building block and (2) attachment of the building block onto heptakis(6-deoxy-6-iodo)-beta-cyclodextrin. Calorimetric titrations performed at 25 degrees C in buffered aqueous solution (pH 7.4) gave the affinity constants and the thermodynamic parameters for the inclusion complex formation of these beta-cyclodextrin derivatives with guests sodium 8-anilino-1-naphthalensulfonate (ANS) and 2-naphthalenesulfonate. The host capability of the persubstituted beta-cyclodextrins decreased with respect to the native beta-CD when sodium 2-naphthalenesulfonate was used as a guest and improved when ANS was used as a guest molecule. Heptavalent mannoclusters based on beta-CD cores enhance the lectin binding affinity due to the cluster effect; however, the increase of the valency from 7 to 14 ligands did not contribute to the improvement of the concanavalin A binding affinity. In addition, the synthesized hyperbranched mannoCDs lost completely the capability as a host molecules.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号