首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Advanced functional safeguarding composites with enhanced anti-impact and excellent thermal properties
Authors:Wenhui Wang  Sheng Wang  Shuai Liu  Jianyu Zhou  Junshuo Zhang  Fang Yuan  Min Sang  Xinglong Gong
Institution:CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Abstract:Personal safety protection has played an important role in daily life. Developing advanced functional safeguarding composites with enhanced anti-impact and excellent thermal properties will be a significant development for body armor. Herein, Kevlar fiber reinforced polymers (KFRP) were fabricated by introducing short Kevlar fibers (KFs) into a shear stiffening elastomer (SSE). The storage modulus of KFRP with 15 wt% KFs (KFRP-15%) increased from 222.8 kPa to 830.8 kPa when the shear frequency varied from 0.1 Hz to 100 Hz. KFRP-15% achieved a higher tensile strength (2.65 MPa) and fracture toughness (11.95 kJ/m2) than SSE in the vertical type, showing superior tear resistance. Additionally, KFRP-15% exhibited promising anti-impact properties, which could dissipate the drop hammer impact force from 1.74 kN to 0.56 kN and remained intact after 10 consecutive impacts. Moreover, KFRP-15% also presented excellent stab-resistant performance. In addition, KFRP-15% also showed improved heat transfer properties, flame retardancy, and smoke suppression capabilities. Finally, functional bracers based on KFRP-15% for protection, thermal-dissipation, and flame-retardant were successfully prepared.
Keywords:Kevlar  shear stiffening elastomer  fiber reinforced polymers  safeguarding  thermal properties
点击此处可从《中国科学技术大学学报》浏览原始摘要信息
点击此处可从《中国科学技术大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号