首页 | 本学科首页   官方微博 | 高级检索  
     

高电压/宽温域水系碱金属离子电池的研究进展
引用本文:陈晨阳,赵永智,李园园,刘金平. 高电压/宽温域水系碱金属离子电池的研究进展[J]. 物理化学学报, 2023, 39(5): 2211005-0. DOI: 10.3866/PKU.WHXB202211005
作者姓名:陈晨阳  赵永智  李园园  刘金平
作者单位:1 武汉理工大学化学化工与生命科学学院, 材料复合新技术国家重点实验室, 武汉 4300702 华中科技大学光学与电子信息学院, 武汉 430074
基金项目:国家自然科学基金(51972257);国家自然科学基金(52172229);国家自然科学基金(52072136);中央高校基本科研业务费专项资金(2022IVA197);材料复合新技术国家重点实验室(武汉理工大学)开放基金(2022-KF-20)
摘    要:水系储能器件具有固有的高安全性、环境友好性和成本低的优势,在未来智能电网、便携式/可穿戴电子产品等领域显示出巨大的应用潜力。然而水的热力学分解电压低、冰点高,导致水系电解液电化学稳定电压窗口窄以及凝固点高,极大地限制了水系储能器件的能量密度与宽温域应用。因此,设计耐高电压、抗冻的水系电解液,成为水系储能器件大规模、多场景应用的关键。本文系统综述了高电压/宽温域水系碱金属离子电池电解液设计的研究进展,从热力学和动力学角度出发,分别重点介绍提高电解液电压窗口和工作温度范围的各类策略以及相关作用机制。进一步提出宽温域、高压水系电解液的潜在设计思路,并对高性能水系碱金属离子电池的发展方向进行展望。

关 键 词:碱金属离子电池  水系电解液  电解液调控  高电压  宽温域
收稿时间:2022-11-03

Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries
Chenyang Chen,Yongzhi Zhao,Yuanyuan Li,Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(5): 2211005-0. DOI: 10.3866/PKU.WHXB202211005
Authors:Chenyang Chen  Yongzhi Zhao  Yuanyuan Li  Jinping Liu
Affiliation:1. School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Aqueous electrochemical energy storage (EES) devices have inherent advantages, such as high safety, environmental-friendliness, and low cost, exhibiting significant potential for application in future smart grids, portable/wearable electronics, and other fields. However, the low thermodynamic decomposition voltage of water (1.23 V) results in a narrow electrochemical stability window (ESW) of the aqueous electrolyte, limiting the selection of electrode materials. Therefore, aqueous alkali metal-ion batteries (AABs) have a low operating voltage and energy density. Considering the diverse application of AABs, the operation of AABs under extreme temperature conditions faces critical challenges. At a low temperature, the electrolyte freezes easily owing to the high freezing point of water (0 ℃); the ionic conductivity of the electrolyte decreases significantly, and the charge/discharge polarization increases. Therefore, AABs generally have a low capacity, poor rate performance, and low energy/power densities, and are unable to operate normally. At a high temperature, the water activity improves, and the side reaction of water decomposition intensifies. Hence, the cycle performance of AABs deteriorates, and the battery exhibits safety issues, such as expansion and thermal runaway. In recent years, significant research has been conducted to overcome the shortcomings of the aqueous EES, inspiring further research and development of future high-performance aqueous EESs. Reducing the water activity and increasing the hydrogen evolution reaction (HER) or oxygen evolution reaction (OER) overpotential are effective strategies to widen the ESW of aqueous electrolytes, which are mostly realized by utilizing high concentration salts, additives, and co-solvents. Using salt additives or organic co-solvents to break the intermolecular hydrogen bonds of water and reduce the interfacial charge transfer resistance are effective strategies to improve the low-temperature performance of AABs. Additionally, salt additives/co-solvents with high thermal stability can form strong hydrogen bonds with water, effectively improving the water retention and reducing the water activity, which ensure the enhanced electrochemical performance of the AABs at high temperatures. This review systematically summarizes the research progress of electrolyte design for AABs with a high voltage/wide operating temperature range. From the perspective of thermodynamics and kinetics, various strategies to widen the ESW and operating temperature range of the electrolyte as well as the relevant mechanisms are introduced. Potential concepts for designing high-voltage aqueous electrolytes with operation ability at a wide temperature range are proposed, and the development direction of high-performance AABs is presented.
Keywords:Alkali metal-ion battery  Aqueous electrolyte  Electrolyte regulation  High-voltage  Wide-temperature-range  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号