首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemical Quartz Crystal Microbalance Studies on the Codeposition of Dextran Sodium Sulfate with the Charge‐Transfer Complexes Generated During Electrooxidation of Benzidine Derivatives
Authors:Xueqin Jiang  Zhijun Cao  Tao Liu  Qingji Xie  Shouzhuo Yao
Affiliation:1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.?R. China;2. College of Applied Sciences, Beijing University of Technology, Beijing 100022, P.?R. China
Abstract:The electrochemical quartz crystal microbalance (EQCM) technique was used to investigate the electrochemistry of three benzidine derivatives, o‐tolidine (o‐TD), 3,3′,5,5′‐tetramethyl‐benzidine (TMB) and o‐dianisidine (o‐DA), in Britton‐Robinson (B‐R) buffer solutions with and without coexisting dextran sodium sulfate (DSS), respectively. During the anodic potential sweep from 0.1 to 0.7 V vs. SCE in pH 5.0 B‐R buffer solution containing o‐TD, the EQCM frequency was decreased during the first‐step oxidation of o‐TD and then increased to some extent during its second‐step oxidation, implying that a poorly soluble charge‐transfer complex (CTC) was produced here as an oxidation intermediate, and its precipitation and then dissolution at the EQCM Au electrode decreased and then increased the frequency. The depth of the V‐shaped time‐dependent frequency response (?Δf0V) to the redox switching of the CTC/o‐TD couple (0.1–0.37 V vs. SCE) was notably enhanced in the presence of DSS, being due to the formation of a mass‐enhanced CTC‐DSS adduct via electrostatic affinity. Similar phenomena were evident in the TMB system, but the CTC behavior was not observed during o‐DA oxidation in the absence of DSS, namely, the EQCM frequency kept decreasing all the time, due probably to the too high lability of the CTC from o‐DA oxidation, and the coexistence of DSS could well stabilize this CTC and turn on its CTC behavior. The o‐TD system showed the highest sensitivity to DSS and was thus examined in detail. The mechanism for the CTC‐DSS interaction is discussed from EQCM, FT‐IR and UV‐vis data. The CTC‐based EQCM determination of DSS, which is featured by a dynamically renewed surface of the detection electrode, was thus proposed, with a linear range from 0.002 to 1.6 μmol L?1 and a detection limit down to 0.7 nmol L?1 (o‐TD system).
Keywords:Charge‐transfer complexes  Benzidine derivatives  Dextran sodium sulfate  Electrochemical quartz crystal microbalance  Dynamically renewed electrode surface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号