首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of α‐Chymotrypsin Catalysis by Ferric Porphyrins and Cyclodextrins
Authors:Koji Kano Prof. Dr.  Yoshiyuki Ishida
Affiliation:Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610‐0321, Japan, Fax: (+81)?774‐65‐6845
Abstract:Positively charged α‐chymotrypsin (ChT) formed a 1:1 complex with negatively charged 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrinato iron(III) (FeTPPS) in phosphate buffer at pH 7.4 through electrostatic interaction. In spite of the large binding constant (K=4.8×105 M ?1), FeTPPS could not completely inhibit the catalysis of ChT in the hydrolysis of the model substrate, N‐succinyl‐L ‐phenylalanine p‐nitroanilide (SPNA). The degree of inhibition (60 %) was saturated at 1.6 equivalents of FeTPPS, which indicates that covering of the active site of ChT by FeTPPS was insufficient. The enzymatic activity lowered by FeTPPS was entirely recovered for the freshly prepared sample when the porphyrin on the protein surface was detached by per‐O‐methylated β‐cyclodextrin (TMe‐β‐CD), which formed a stable 1:2 inclusion complex with FeTPPS (K1=1.26×106 M ?1, K2=6.3×104 M ?1). FeTPPS gradually induced irreversible denaturation of ChT, and the denatured ChT further lost its catalytic ability. No repairing effect of TMe‐β‐CD was observed with irreversibly denatured ChT. A new reversible inhibitor, 5,10,15,20‐tetrakis[4‐(3,5‐dicarboxyphenylmethoxy)phenyl]porphyrinato iron(III) (FeP8M), was then designed, and its inhibitory behavior was examined. FeP8M formed very stable 1:1 and 1:2 FeP8M/ChT complexes with ChT, the K1 and K2 values being 2.0×108 and 1.0×106 M ?1, respectively. FeP8M effectively inhibited the ChT‐catalyzed hydrolysis of SPNA (maximum degree of inhibition=85 %), and the activity of ChT was recovered by per‐O‐methylated γ‐cyclodextrin. No irreversible denaturation of ChT occurred upon binding with FeP8M. The kinetic data support the observation that, for nonincubated samples, both inhibitors did not cause significant conformational change in ChT and inhibited the ChT activity by covering the active site of the enzyme.
Keywords:cyclodextrins  electrostatic interactions  enzyme catalysis  inhibitors  supramolecular chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号