首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase diagram and entropic interaction parameter of athermal all‐polymer nanocomposites
Authors:Alaitz Ruiz de Luzuriaga  Agustín Etxeberria  Javier Rodríguez  José A Pomposo
Institution:1. New Materials Department, CIDETEC, Paseo Miramón 196, E‐20009 Donostia, Spain;2. Department of Polymer Science and Technology, Faculty of Chemistry and POLYMAT, UPV/EHU, P.O. Box 1072, E‐20018 Donostia, Spain
Abstract:An entropic model is introduced for the prediction of the χ interaction parameter and phase diagram of athermal all‐polymer nanocomposites (chemically identical polymer‐nanoparticle/linear‐polymer blends). According to this model, dilution of contact (hard sphere‐like) nanoparticle/nanoparticle interactions upon mixing plays a key role in explaining the miscibility behavior of athermal all‐polymer nanocomposites in the presence of unfavorable chain expansion (or contraction) effects. The new model is valid both for the cases of chain stretching and chain contraction and provides an appropriate capture of entropy changes accompanying the mixing of chemically identical nanoparticles and polymers. A good agreement was found between predicted χ interaction parameter (χcal = ?2.3 × 10?3) and reported small angle neutron scattering (SANS) experimental data (equation image ~ ?2 × 10?3) for 211 kDa cross‐linked poly(styrene) (PS)‐nanoparticles dissolved in 473 kDa deuterated linear‐PS. In addition, the miscibility boundary calculated from the model for PS‐nanoparticle/linear‐PS nanocomposites (?1 = 0.02) compared very favorably to that experimentally found. For this system, the spinodal line in the polymer radius of gyration (Rg) versus nanoparticle radius (a) phase diagram was found to follow the simple scaling law: equation image , equation image being the polymer radius of gyration at which the second derivative of the free energy of mixing vanishes. Finally, the model has been employed for the prediction of the entropic χ interaction parameter, the miscibility behavior, and the melting point depression of athermal poly(ethylene) (PE)‐nanoparticle/linear‐PE nanocomposites using recent chain dimension data from Monte Carlo (MC) simulations, where chain stretching or chain contraction effects were observed depending on nanoparticle size. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:nanoparticles  polymer blends  nanocomposites  thermodynamics  nanotechnology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号