首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculation of nonlinear aerodynamic characteristics of a wing using a 3‐D panel method
Authors:Jeonghyun Cho  Jinsoo Cho
Institution:School of Mechanical Engineering, Hanyang University, Seoul 133‐791, Republic of Korea
Abstract:The nonlinear aerodynamic characteristic of a wing is investigated using the frequency‐domain panel method. To calculate the nonlinear aerodynamic characteristics of a three‐dimensional wing, the iterative decambering approach is introduced into the frequency‐domain panel method. The decambering approach uses the known nonlinear aerodynamic characteristic of airfoil and calculates two‐variable decambering function to take into consideration the boundary‐layer separation effects for the each section of the wing. The multidimensional Newton iteration is used to account for the coupling between the different sections of wing. The nonlinear aerodynamic analyses for a rectangular wing, a tapered wing, and a wing with the control surface are performed. Present results are given with experiments and other numerical results. Computed results are in good agreement with other data. This method can be used for any wing having different nonlinear aerodynamic characteristics of airfoil. The present method will contribute to the analysis of aircraft in the conceptual design because the present method can predict the nonlinear aerodynamic characteristics of a wing with a few computing resources and significant time. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:nonlinear aerodynamic characteristics  frequency‐domain panel method  iterative decambering approach  Newton iteration  kernel function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号