首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photodissociation of Dibromobenzenes at 266 nm by the Velocity Imaging Technique
Authors:Xiao‐Peng Zhang Dr  Zheng‐Rong Wei  Wei‐Bin Lee Dr  Ting‐Jung Chao  King‐Chuen Lin Prof
Institution:1. Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan);2. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106 (Taiwan), Fax: (+886)?2‐23621483;3. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (P.R. China)
Abstract:A velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the primary Br(2P3/2) fragment in the photodissociation of o‐, m‐, and p‐dibromobenzene at 266 nm. The obtained translational energy distributions suggest that the Br fragments are produced via two dissociation channels. For o‐ and m‐dibromobenzene, the slow channel that yields an anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (π,π*) state followed by predissociation along a repulsive triplet (n,σ*) state localized on the C? Br bond. The fast channel that gives rise to an anisotropy parameter of 0.53–0.73 is attributed to a bound triplet state with smaller dissociation barrier. For p‐dibromobenzene, the dissociation rates are reversed, because the barrier for the bound triplet state becomes higher than the singlet–triplet crossing energy. The fractions of translational energy release are determined to be 6–8 and 29–40 % for the slow and fast channels, respectively; the quantum yields are 0.2 and 0.8, and are insensitive to the position of the substituent. The Br fragmentation from bromobenzene and bromofluorobenzenes at the same photolyzing wavelength is also compared to understand the effect of the number of halogen atoms on the phenyl ring.
Keywords:bromine  laser spectroscopy  photochemistry  resonance‐enhanced multiphoton ionization  velocity imaging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号