首页 | 本学科首页   官方微博 | 高级检索  
     

基于中红外光谱技术鉴别转基因大豆的方法研究
引用本文:方慧,张昭,王海龙,杨向东,何勇,鲍一丹. 基于中红外光谱技术鉴别转基因大豆的方法研究[J]. 光谱学与光谱分析, 2017, 37(3): 760-765. DOI: 10.3964/j.issn.1000-0593(2017)03-0760-06
作者姓名:方慧  张昭  王海龙  杨向东  何勇  鲍一丹
作者单位:1. 浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
2. 吉林省农业科学院农业生物技术研究所,吉林 长春 130033
基金项目:国家高技术研究发展计划(863)项目,国家自然科学基金项目
摘    要:转基因技术对于实现粮食增产,保护生物多样性,减少化学农药使用量等方面有着重大意义,但也可能存在一定的安全隐患。因此,转基因作物检测鉴别技术的研究愈发受到重视。本文采用中红外光谱分析技术,研究对不同品种的转基因大豆及其亲本进行鉴别的可行性。实验采集了三种不同的非转基因大豆亲本(HC6, JACK和W82)及其转基因大豆品种在3 818~734 cm-1范围内的光谱信息。采用偏最小二乘-判别分析(partial least squares-discriminant analysis, PLS-DA)进行判别分析,三种大豆的建模集的判别正确率分别为96.67%, 96.67%和83.33%,预测集的判别正确率分别为83.33%, 85%和85%。研究中采用X-loading weights、变量投影重要性(variable importance in the projection,VIP)和二阶导数(second derivative,2-Der)三种特征波数选择方法对光谱数据进行处理,并根据得到的特征波数分别建立PLS-DA模型进行判别分析,三种大豆的建模集和预测集的判别正确率均超过76.67%和75%。采用主成分分析(principal component analysis,PCA)和独立组分分析(independent component analysis,ICA)两种特征信息提取方法对光谱数据进行处理,分别建立PCA-PLS-DA和ICA-PLS-DA模型进行判别分析,三种大豆的建模集和预测集的判别正确率均超过80%和75%。研究表明中红外光谱分析技术可以较为准确地鉴别非转基因亲本与转基因品种,为转基因大豆的无损鉴别提供新的思路。同时结合特征波数选择方法与特征信息提取方法可以有效地降低模型复杂度,减少程序运算量。

关 键 词:中红外光谱  转基因大豆  特征波数选择  特征信息提取   
收稿时间:2016-03-22

Identification of Transgenic Soybean Varieties Using Mid-Infrared Spectroscopy
FANG Hui,ZHANG Zhao,WANG Hai-long,YANG Xiang-dong,HE Yong,BAO Yi-dan. Identification of Transgenic Soybean Varieties Using Mid-Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 760-765. DOI: 10.3964/j.issn.1000-0593(2017)03-0760-06
Authors:FANG Hui  ZHANG Zhao  WANG Hai-long  YANG Xiang-dong  HE Yong  BAO Yi-dan
Affiliation:1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China2. Agriculture Biotechnology Research Center, Jilin Academy of Agriculture Science, Changchun 130033, China
Abstract:Transgenic technology has enormous significance in increasing food production,protecting biodiversity and reducing the use of chemical pesticides and so on .However,there may be some security risks; therefore,research on genetically modified crop identification technology is attracting more and more attention .Mid-infrared spectroscopy combined with feature extraction methods were used to investigate the feasibility of identifying different kinds of transgenic soybeans in the wavelength range of 3 818~734 cm-1 .For this purpose,partial least squares-discriminant analysis (PLS-DA) was employed a s pattern recognition methods to classify three non-GMO parent soybeans(HC6,J ACK and W82)and their transgenic soybeans .The results of the calibration set w ere 96.67%,96.67% and 83.33% for three non-GMO parent soybeans and their transgenic soybeans,and the results of the prediction set were 83.33%,85% and 85% .X-loading weights,variable importance in the projection (VIP) algorithm and second derivative (2-Der) algorithm were applied to select sensitive wavenumbers .The sensitive wavelengths selected with x-loading weights were used to build P LS-DA model,the classification accuracy of the calibration set were 91.11%,91.67% and 81.67%,and the results of the prediction set were 80%,80% and 75% .By using the VIP algorithm,the classification accuracy of the calibration set were 94.44%,95% and 76.67%,and the results of the prediction set were 80%,85% and 75% .By using the 2-Der algorithm,the classification accuracy of the calibration set were 88.89%,81.67% and 80%,and the results of the prediction set we re 76.67%,75% and 75% .Principal components analysis (PCA) and independent component analysis (ICA) were applied to extract feature information .The principal components were combined with PLS-DA model .The classification accuracy of the calibration set were 9667%,90% and 80%,and the results of the prediction set w e re 80%,90% and 80% .The independent components were combined with PLS-DA model .The classification accuracy of the calibration set were 9333%,8333% and 8333% while the results of the prediction set were 8333%,75% and 75% .The overall results indicated that mid-infrared spectroscopy could accurately identify the varieties of the non-GMO parent soybeans,which provided a new idea for nondestructive testing of transgenic soybeans .Feature extraction methods could be us ed to build more concise models and reduce the amount of program operations combined with sensitive wavenumbers selection methods .
Keywords:Mid-infrared hyperspectral spectroscopy  Transgenic soybean  Effective wovenumbers selection  Feature extraction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号