首页 | 本学科首页   官方微博 | 高级检索  
     

早M型矮恒星光谱聚类方法与分析
作者姓名:刘杰  潘景昌  吴明磊  刘聪  韦鹏  衣振萍  刘猛
作者单位:1. 山东大学(威海)机电与信息工程学院,山东 威海 264209
2. 中国科学院光学天文重点实验室,中国科学院国家天文台,北京 100012
3. 哈尔滨理工大学(荣成校区),山东 威海 264209
摘    要:大规模光谱巡天项目如LAMOST等产生了海量极具研究价值的观测数据,如何对此数量级的数据进行有效的分析是当前的一个研究热点。聚类算法是一类无监督的机器学习算法,可以在不依赖于领域知识的情况下对数据进行处理,发现其中的规律与结构。恒星光谱聚类是天文数据处理中一项非常重要的工作,主要对海量光谱巡天数据按照其物理及化学性质分类。针对LAMOST巡天中的早M型矮恒星的光谱数据,使用多种聚类算法如K-Means,Bisecting K-Means和OPTICS算法做了聚类分析,研究不同聚类算法在早M型恒星数据的表现。聚类算法在一定程度依赖于其使用的距离度量算法,同时研究了欧氏距离、曼哈顿距离、残差分布距离和上述三种聚类算法搭配下的表现。实验结果表明:(1)聚类算法可以很好地辅助分析早M型矮恒星的光谱数据,聚类产生的簇心数据和MK分类吻合得非常好。(2)三种不同聚类算法表现不尽相同,Bisecting K-Means在恒星光谱细分类方面更有优势。(3) 在聚类的同时也会产生一些数量较少的簇,从这些簇中可以发现一些稀有天体候选体,相对而言OPTICS适合用来寻找稀有天体候选体。

关 键 词:LAMOST  聚类  降维  
收稿时间:2017-01-01
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号