首页 | 本学科首页   官方微博 | 高级检索  
     

紫外、近红外、多源复合光谱信息的银杏叶质量快速分析
引用本文:张立国,程佳佳,倪力军,栾绍嵘. 紫外、近红外、多源复合光谱信息的银杏叶质量快速分析[J]. 光谱学与光谱分析, 2017, 37(10): 3063-3069. DOI: 10.3964/j.issn.1000-0593(2017)10-3063-07
作者姓名:张立国  程佳佳  倪力军  栾绍嵘
作者单位:华东理工大学化学与分子工程学院,上海 200237
基金项目:上海市科学技术委员会支撑项目
摘    要:为考察不同类型光谱信息用于银杏叶质量快速分析的适应性,收集了58个银杏叶样品,采用高效液相色谱方法(HPLC)测定其黄酮及内酯类活性成分的含量作为定标和检验样本的因变量(y)值,测定各样品的紫外、近红外光谱及包含紫外、可见及近红外信号的多源复合光谱信息作为样本的自变量(x)值;分别采用偏最小二乘回归(PLSR),以及根据待测样本在自变量空间最近邻K个样本与待测样本间的相互关系去预测其因变量值的KNN保形映射(KNN-KSR)方法,建立银杏叶活性成分的光谱定量分析模型,比较各光谱模型下检验集样本实测值与模型值的相关系数(R)、均方根偏差(RMSEP)、平均相对误差(MRE)。结果表明PLSR方法所建立的三类光谱模型的各项指标均不及KNN-KSR方法、且其紫外光谱模型的结果极差;而采用KNN-KSR方法根据三类光谱信息预测银杏叶中黄酮、内酯类成分时,R基本能达到0.8、RMSEP分别小于0.05与0.025且其平均相对误差均在8%以下。采用KNN-KSR方法根据紫外、近红外及多源光谱信息均可实现对银杏叶中四类黄酮醇苷成分及三类内酯成分含量的快速分析,突破了现有工作只是基于PLSR方法、根据近红外光谱信息对银杏叶总黄酮醇苷进行定量分析的局限;利用紫外和多源复合光谱信息及KNN-KSR方法进行银杏叶中黄酮醇苷及内酯类成分的快速检测,为银杏叶质量分析提供了更多的方法和选择。多源复合光谱仪具有体积小、成本低,便携的优点,非常适合银杏叶药材现场采购的快速检测及后续产品的质量分析与监控。

关 键 词:银杏叶  近红外光谱  紫外光谱  多源复合光谱仪  KNN保形映射方法  
收稿时间:2016-09-06

Rapid Analysis of the Quality of Ginkgo Biloba Leaf Based on UV,Near Infrared and Multi-Source Composite Spectral Information
ZHANG Li-guo,CHENG Jia-jia,NI Li-jun,LUAN Shao-rong. Rapid Analysis of the Quality of Ginkgo Biloba Leaf Based on UV,Near Infrared and Multi-Source Composite Spectral Information[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3063-3069. DOI: 10.3964/j.issn.1000-0593(2017)10-3063-07
Authors:ZHANG Li-guo  CHENG Jia-jia  NI Li-jun  LUAN Shao-rong
Affiliation:School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:In order to study the adaptability of using different kinds of spectra to analyze the quality of Ginkgo biloba leaves quickly,58 samples of Ginkgo biloba leaves were collected.The contents of the active components of flavonoid glycosides and terpene lactones were determined as dependent variables (y )by high performance liquid chromatography (HPLC),and the inde-pendent variables (x)included ultraviolet (UV),visible and near infrared spectra signals.Quantitative analysis models of fla-vonoids and lactones in Ginkgo biloba leaves were established by partial least square regression (PLSR)and an innovative method of keeping a same relationship between X andY space (KNN-KSR method for short).The method predicted dependent variables based on the object's independent variables and the relationship between the object and its K nearest neighbors in independent variable space.Correlation coefficient R between the measured values and the model values,root mean square error of prediction (RMSEP),and the average relative error of the prediction (MRE)were applied to evaluate the models.All evaluated indicators of PLSR models based on three kinds of spectral information were inferior to those of KNN-KSR method,and the results of PLSR models based on UV spectra were very poor;However,when KNN-KSR method was used to predict the flavonoids and lactones in Ginkgo biloba leaves based on three kinds of spectral information,R was higher than 0.8;RMSEP of flavonoids and lactones were less than 0.05 and 0.025,respectively;MRE of flavonoids and lactones content were below 8%.UV,NIR and multi-source composite spectral information combing KNN-KSR method could achieve rapid analysis of four kinds of flavonoid glycosides and three kinds of terpene lactones in Ginkgo biloba leaves.The present work broke through the limitation of existing work that only analyzed total flavonoids in Ginkgo biloba leaves by PLSR method based on NIR;The proposed new ideas to rap-idly determine flavonoids and lactones in Ginkgo biloba leaves using UV and multi-spectral information by KNN-KSR method provided more available methods and choices for the quality analysis of ginkgo biloba leaves.The multi-source composite spec-trometer,which can provide spectral information of various types,is portable,of small volume and low cost.It is very suitable for the rapid detection of on-the-spot Ginkgo biloba leaves acquisition and follow-up product quality analysis and monitoring.
Keywords:Ginkgo biloba leaves  Near infrared spectroscopy  Ultraviolet spectrum  Multi-source complex spectrometer  KNN-KSR
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号