首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forced snaking: Localized structures in the real Ginzburg-Landau equation with spatially periodic parametric forcing
Authors:Benjamin C Ponedel  Edgar Knobloch
Institution:1.Department of Physics,University of California at Berkeley,Berkeley,USA
Abstract:We study spatial localization in the real subcritical Ginzburg-Landau equation u t = m 0 u + Q(x)u + u xx + d|u|2 u ?|u|4 u with spatially periodic forcing Q(x). When d>0 and Q ≡ 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u = u 0 with stationary localized structures which accumulate at the Maxwell point m 0 = ?3d 2/16. When spatial forcing is included its wavelength is imprinted on u 0 creating conditions favorable to front pinning and hence spatial localization. We use numerical continuation to show that under appropriate conditions such forcing generates a sequence of localized states organized within a snakes-and-ladders structure centered on the Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability properties of these states and show that longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated snaking.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号