首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of on-chip elongation for fabricating double-stranded DNA microarrays
Authors:Bai Yunfei  Ge Qinyu  Wang Jinke  Li Tongxiang  Liu Quanjun  Lu Zuhong
Affiliation:

Chien-Shiung Wu Laboratory, Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

Abstract:The sequence-specific recognitions between DNA and proteins are playing important roles in many biological functions. The double-stranded DNA microarrays (dsDNA microarrays) can be used to study the sequence-specific recognitions between DNAs and proteins in highly parallel way. In this paper, two different elongation processes in forming dsDNA from the immobilized oligonucleotides have been compared in order to optimize the fabrication of dsDNA microarrays: (1) elongation from the hairpins formed by the self-hybridized oligonucleatides spotted on a glass; (2) elongation from the complementary primers hybridized on the spotted oligonucleatides. The results suggested that the dsDNA probes density produced by the hybridized-primer extension was about four times lower than those by the self-hybridized hairpins. Meanwhile, in order to reduce the cost of dsDNA microarrays, we have replaced the Klenow DNA polymerase with Taq DNA polymerase, and optimized the reaction conditions of on-chip elongation. Our experiements showed that the elongation temperature of 50 °C and the Mg2+ concentration of 2.5 mM are the optimized conditions in elongation with Taq DNA polymerase. A dsDNA microarray has been successfully constructed with the above method to detect NF-kB protein.
Keywords:dsDNA microarrays   Taq DNA polymerase   On-chip elongation   DNA–protein interactions
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号