首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Error bounds on the SCISSORS approximation method
Authors:Haque Imran S  Pande Vijay S
Institution:Department of Computer Science, Stanford University, Stanford, California, United States.
Abstract:The SCISSORS method for approximating chemical similarities has shown excellent empirical performance on a number of real-world chemical data sets but lacks theoretically proven bounds on its worst-case error performance. This paper first proves reductions showing SCISSORS to be equivalent to two previous kernel methods: kernel principal components analysis and the rank-k Nystro?m approximation of a Gram matrix. These reductions allow the use of generalization bounds on these techniques to show that the expected error in SCISSORS approximations of molecular similarity kernels is bounded in expected pairwise inner product error, in matrix 2-norm and Frobenius norm for full kernel matrix approximations and in root-mean-square deviation for approximated matrices. Finally, we show that the actual performance of SCISSORS is significantly better than these worst-case bounds, indicating that chemical space is well-structured for chemical sampling algorithms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号