首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A hybrid framework for optimizing beam angles in radiation therapy planning
Authors:Gino J Lim  Laleh Kardar  Wenhua Cao
Institution:1. Department of Industrial Engineering, University of Houston, Houston, TX, USA
Abstract:The purpose of this paper is twofold: (1) to examine strengths and weaknesses of recently developed optimization methods for selecting radiation treatment beam angles and (2) to propose a simple and easy-to-use hybrid framework that overcomes some of the weaknesses observed with these methods. Six optimization methods—branch and bound (BB), simulated annealing (SA), genetic algorithms (GA), nested partitions (NP), branch and prune (BP), and local neighborhood search (LNS)—were evaluated. Our preliminary test results revealed that (1) one of the major drawbacks of the reported algorithms was the limited ability to find a good solution within a reasonable amount of time in a clinical setting, (2) all heuristic methods require selecting appropriate parameter values, which is a difficult chore, and (3) the LNS algorithm has the ability to identify good solutions only if provided with a good starting point. On the basis of these findings, we propose a unified beam angle selection framework that, through two sequential phases, consistently finds clinically relevant locally optimal solutions. Considering that different users may use different optimization approaches among those mentioned above, the first phase aims to quickly find a good feasible solution using SA, GA, NP, or BP. This solution is then used as a starting point for LNS to find a locally optimal solution. Experimental results using this unified method on five clinical cases show that it not only produces consistently good-quality treatment solutions but also alleviates the effort of selecting an initial set of appropriate parameter values that is required by all of the existing optimization methods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号